Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; : 116166, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38527556

RESUMO

The liver plays a pivotal role in drug disposition owing to the expression of transporters accounting for the uptake at the sinusoidal membrane and the efflux across the basolateral and canalicular membranes of hepatocytes of many different compounds. Moreover, intracellular mechanisms of phases I and II biotransformation generate, in general, inactive compounds that are more polar and easier to eliminate into bile or refluxed back toward the blood for their elimination by the kidneys, which becomes crucial when the biliary route is hampered. The set of transporters expressed at a given time, i.e., the so-called transportome, is encoded by genes belonging to two gene superfamilies named Solute Carriers (SLC) and ATP-Binding Cassette (ABC), which account mainly, but not exclusively, for the uptake and efflux of endogenous substances and xenobiotics, which include many different drugs. Besides the existence of genetic variants, which determines a marked interindividual heterogeneity regarding liver drug disposition among patients, prevalent diseases, such as cirrhosis, non-alcoholic steatohepatitis, primary sclerosing cholangitis, primary biliary cirrhosis, viral hepatitis, hepatocellular carcinoma, cholangiocarcinoma, and several cholestatic liver diseases, can alter the transportome and hence affect the pharmacokinetics of drugs used to treat these patients. Moreover, hepatic drug transporters are involved in many drug-drug interactions (DDI) that challenge the safety of using a combination of agents handled by these proteins. Updated information on these questions has been organized in this article by superfamilies and families of members of the transportome involved in hepatic drug disposition.

2.
Biomed Pharmacother ; 174: 116439, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38518601

RESUMO

Triple-negative breast cancer (TNBC) is characterised by its aggressiveness and resistance to chemotherapy, demanding the development of effective strategies against its unique characteristics. Derived from lapacho tree bark, ß-lapachone (ß-LP) selectively targets cancer cells with elevated levels of the detoxifying enzyme NQO1. Hydroxytyrosol (HT) is a phenolic compound derived from olive trees with important anticancer properties that include the inhibition of cancer stem cells (CSCs) and metastatic features in TNBC, as well as relevant antioxidant activities by mechanisms such as the induction of NQO1. We aimed to study whether these compounds could have synergistic anticancer activity in TNBC cells and the possible role of NQO1. For this pourpose, we assessed the impact of ß-LP (0.5 or 1.5 µM) and HT (50 and 100 µM) on five TNBC cell lines. We demonstrated that the combination of ß-LP and HT exhibits anti-proliferative, pro-apoptotic, and cell cycle arrest effects in several TNBC cells, including docetaxel-resistant TNBC cells. Additionally, it effectively inhibits the self-renewal and clonogenicity of CSCs, modifying their aggressive phenotype. However, the notable impact of the ß-LP-HT combination does not appear to be solely associated with the levels of the NQO1 protein and ROS. RNA-Seq analysis revealed that the combination's anticancer activity is linked to a strong induction of endoplasmic reticulum stress and apoptosis through the unfolded protein response. In conclusion, in this study, we demonstrated how the combination of ß-LP and HT could offer an affordable, safe, and effective approach against TNBC.

3.
Cancers (Basel) ; 15(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37370755

RESUMO

Despite its often low efficacy and high toxicity, the standard treatment for acute myeloid leukemia (AML) is induction chemotherapy with cytarabine and idarubicin. Here, we have investigated the role of transporters and drug-metabolizing enzymes in this poor outcome. The expression levels (RT-qPCR) of potentially responsible genes in blasts collected at diagnosis were related to the subsequent response to two-cycle induction chemotherapy. The high expression of uptake carriers (ENT2), export ATP-binding cassette (ABC) pumps (MDR1), and enzymes (DCK, 5-NT, and CDA) in the blasts was associated with a lower response. Moreover, the sensitivity to cytarabine in AML cell lines was associated with ENT2 expression, whereas the expression of ABC pumps and enzymes was reduced. No ability of any AML cell line to export idarubicin through the ABC pumps, MDR1 and MRP, was found. The exposure of AML cells to cytarabine or idarubicin upregulated the detoxifying enzymes (5-NT and DCK). In AML patients, 5-NT and DCK expression was associated with the lack of response to induction chemotherapy (high sensitivity and specificity). In conclusion, in the blasts of AML patients, the reduction of the intracellular concentration of the active metabolite of cytarabine, mainly due to the increased expression of inactivating enzymes, can determine the response to induction chemotherapy.

4.
Cancer Genomics Proteomics ; 19(6): 727-739, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36316038

RESUMO

BACKGROUND/AIM: Artemisinin and its derivatives are not only approved antimalarial drugs but also exert strong anticancer activity. Based on the clinical activity of artesunate (ART) that has been previously reported in cervix carcinoma, we investigated a panel of 12 different biomarkers and identified the Wilms Tumor 1 (WT1) protein as a potential target of ART. PATIENTS AND METHODS: Matched biopsies of cervical carcinoma before, during, and after therapy from patients treated with ART were investigated for induction of apoptosis (TUNEL assay) and expression of Wilms Tumor protein 1 (WT1), 14-3-3 ζ, cluster of differentiation markers (CD4, CD8, CD56), ATP-binding cassette transporter B5 (ABCB5), glutathione S-transferase P1 (GSTP1), inducible nitric oxide synthase (iNOS), translationally controlled tumor protein (TCTP), eukaryotic elongation factor 3 (eIF3), and ADP/ATP translocase by immunohistochemistry. WT1 has been selected for more detailed analyses using molecular docking in silico, microscale thermophoresis using recombinant WT1, and cytotoxicity testing (resazurin assay) using HEK293 cells transfected with four different WT1 splice variants. RESULTS: The fraction of apoptotic cells and the expression of WT1, 14-3-3 ζ, and CD4 increased upon ART treatment in tumors of patients. ART was bound in silico to a domain located at the DNA-binding site of WT1, while dihydroartemisinin (DHA) was bound with low affinity to a different site of WT1 not related to DNA-binding. The results were verified using microscale thermophoresis, where ART but not DHA bound to recombinant WT1. Transfectants overexpressing different WT1 splice variants exerted low but significant resistance to ART (≈2-fold). CONCLUSION: WT1 may represent a novel target of ART in cancer cells that contribute to the response of tumor cells to this drug.


Assuntos
Carcinoma , Colo do Útero , Feminino , Humanos , Artesunato/farmacologia , Artesunato/uso terapêutico , Simulação de Acoplamento Molecular , Células HEK293 , Biópsia , Biomarcadores , Proteínas WT1/genética
5.
Cancers (Basel) ; 14(14)2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35884584

RESUMO

Hepatobiliary, pancreatic, and gastrointestinal cancers account for 36% of the ten million deaths caused by cancer worldwide every year. The two main reasons for this high mortality are their late diagnosis and their high refractoriness to pharmacological treatments, regardless of whether these are based on classical chemotherapeutic agents, targeted drugs, or newer immunomodulators. Mechanisms of chemoresistance (MOC) defining the multidrug resistance (MDR) phenotype of each tumor depend on the synergic function of proteins encoded by more than one hundred genes classified into seven groups (MOC1-7). Among them, the efflux of active agents from cancer cells across the plasma membrane caused by members of the superfamily of ATP-binding cassette (ABC) proteins (MOC-1b) plays a crucial role in determining tumor MDR. Although seven families of human ABC proteins are known, only a few pumps (mainly MDR1, MRP1-6, and BCRP) have been associated with reducing drug content and hence inducing chemoresistance in hepatobiliary, pancreatic, and gastrointestinal cancer cells. The present descriptive review, which compiles the updated information on the expression of these ABC proteins, will be helpful because there is still some confusion on the actual relevance of these pumps in response to pharmacological regimens currently used in treating these cancers. Moreover, we aim to define the MOC pattern on a tumor-by-tumor basis, even in a dynamic way, because it can vary during tumor progression and in response to chemotherapy. This information is indispensable for developing novel strategies for sensitization.

6.
Cancers (Basel) ; 13(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068398

RESUMO

Despite the crucial advances in understanding the biology of cholangiocarcinoma (CCA) achieved during the last decade, very little of this knowledge has been translated into clinical practice. Thus, CCA prognosis is among the most dismal of solid tumors. The reason is the frequent late diagnosis of this form of cancer, which makes surgical removal of the tumor impossible, together with the poor response to standard chemotherapy and targeted therapy with inhibitors of tyrosine kinase receptors. The discovery of genetic alterations with an impact on the malignant characteristics of CCA, such as proliferation, invasiveness, and the ability to generate metastases, has led to envisage to treat these patients with selective inhibitors of mutated proteins. Moreover, the hope of developing new tools to improve the dismal outcome of patients with advanced CCA also includes the use of small molecules and antibodies able to interact with proteins involved in the crosstalk between cancer and immune cells with the aim of enhancing the immune system's attack against the tumor. The lack of effect of these new therapies in some patients with CCA is associated with the ability of tumor cells to continuously adapt to the pharmacological pressure by developing different mechanisms of resistance. However, the available information about these mechanisms for the new drugs and how they evolve is still limited.

7.
Cancers (Basel) ; 12(8)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751679

RESUMO

Gastric adenocarcinoma (GAC) is the most common histological type of gastric cancer, the fifth according to the frequency and the third among the deadliest cancers. GAC high mortality is due to a combination of factors, such as silent evolution, late clinical presentation, underlying genetic heterogeneity, and effective mechanisms of chemoresistance (MOCs) that make the available antitumor drugs scarcely useful. MOCs include reduced drug uptake (MOC-1a), enhanced drug efflux (MOC-1b), low proportion of active agents in tumor cells due to impaired pro-drug activation or active drug inactivation (MOC-2), changes in molecular targets sensitive to anticancer drugs (MOC-3), enhanced ability of cancer cells to repair drug-induced DNA damage (MOC-4), decreased function of pro-apoptotic factors versus up-regulation of anti-apoptotic genes (MOC-5), changes in tumor cell microenvironment altering the response to anticancer agents (MOC-6), and phenotypic transformations, including epithelial-mesenchymal transition (EMT) and the appearance of stemness characteristics (MOC-7). This review summarizes updated information regarding the molecular bases accounting for these mechanisms and their impact on the lack of clinical response to the pharmacological treatment currently used in GAC. This knowledge is required to identify novel biomarkers to predict treatment failure and druggable targets, and to develop sensitizing strategies to overcome drug refractoriness in GAC.

8.
Cancers (Basel) ; 12(6)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585893

RESUMO

The poor outcome of patients with non-surgically removable advanced hepatocellular carcinoma (HCC), the most frequent type of primary liver cancer, is mainly due to the high refractoriness of this aggressive tumor to classical chemotherapy. Novel pharmacological approaches based on the use of inhibitors of tyrosine kinases (TKIs), mainly sorafenib and regorafenib, have provided only a modest prolongation of the overall survival in these HCC patients. The present review is an update of the available information regarding our understanding of the molecular bases of mechanisms of chemoresistance (MOC) with a significant impact on the response of HCC to existing pharmacological tools, which include classical chemotherapeutic agents, TKIs and novel immune-sensitizing strategies. Many of the more than one hundred genes involved in seven MOC have been identified as potential biomarkers to predict the failure of treatment, as well as druggable targets to develop novel strategies aimed at increasing the sensitivity of HCC to pharmacological treatments.

9.
Cells ; 9(2)2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098199

RESUMO

The dismal prognosis of patients with advanced cholangiocarcinoma (CCA) is due, in part, to the extreme resistance of this type of liver cancer to available chemotherapeutic agents. Among the complex mechanisms accounting for CCA chemoresistance are those involving the impairment of drug uptake, which mainly occurs through transporters of the superfamily of solute carrier (SLC) proteins, and the active export of drugs from cancer cells, mainly through members of families B, C and G of ATP-binding cassette (ABC) proteins. Both mechanisms result in decreased amounts of active drugs able to reach their intracellular targets. Therefore, the "cancer transportome", defined as the set of transporters expressed at a given moment in the tumor, is an essential element for defining the multidrug resistance (MDR) phenotype of cancer cells. For this reason, during the last two decades, plasma membrane transporters have been envisaged as targets for the development of strategies aimed at sensitizing cancer cells to chemotherapy, either by increasing the uptake or reducing the export of antitumor agents by modulating the expression/function of SLC and ABC proteins, respectively. Moreover, since some elements of the transportome are differentially expressed in CCA, their usefulness as biomarkers with diagnostic and prognostic purposes in CCA patients has been evaluated.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/uso terapêutico , Membrana Celular/metabolismo , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/metabolismo , Terapia de Alvo Molecular/métodos , Proteínas Carreadoras de Solutos/metabolismo , Transportadores de Cassetes de Ligação de ATP/agonistas , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/metabolismo , Biomarcadores/metabolismo , Colangiocarcinoma/diagnóstico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Transporte Proteico , Proteínas Carreadoras de Solutos/agonistas , Proteínas Carreadoras de Solutos/antagonistas & inibidores
10.
Cancers (Basel) ; 11(3)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909445

RESUMO

The most frequent liver tumor in children is hepatoblastoma (HB), which derives from embryonic parenchymal liver cells or hepatoblasts. Hepatocellular carcinoma (HCC), which rarely affects young people, causes one fourth of deaths due to cancer in adults. In contrast, HB usually has better prognosis, but this is still poor in 20% of cases. Although more responsive to chemotherapy than HCC, the failure of pharmacological treatment used before and/or after surgical resection is an important limitation in the management of patients with HB. To advance in the implementation of personalized medicine it is important to select the best combination among available anti-HB drugs, such as platinum derivatives, anthracyclines, etoposide, tyrosine-kinase inhibitors, Vinca alkaloids, 5-fluorouracil, monoclonal antibodies, irinotecan and nitrogen mustards. This requires predicting the sensitivity to these drugs of each tumor at each time because, it should be kept in mind, that cancer chemoresistance is a dynamic process of Darwinian nature. For this goal it is necessary to improve our understanding of the mechanisms of chemoresistance involved in the refractoriness of HB against the pharmacological challenge and how they evolve during treatment. In this review we have summarized the current knowledge on the multifactorial and complex factors responsible for the lack of response of HB to chemotherapy.

11.
Sci Rep ; 7(1): 7475, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28785115

RESUMO

Transporters involved in bile acid (BA) handling by the mammary gland are poorly understood. Here we have investigated the role of ABC proteins in blood-milk BA traffic and its sensitivity to maternal cholestasis. BA concentrations in rat and mouse serum were higher than in milk. BA profiles in both fluids were also different. In mammary gland, mRNA levels of ABC pumps transporting BAs were high for Bcrp, less abundant for Mrp1, Mrp3 and Mrp4 and negligible for Bsep and Mrp2. Milk BA concentrations were lower in Abcg2 -/- than in wild-type mice. Taurocholate administration (5 µmol, i.p.) increased 20-fold BA concentrations in serum, but only moderately in milk, even in Abcg2 -/- mice. Bile duct ligation (BDL) in pregnant rats markedly increased serum BA concentrations, which was not proportionally reflected in milk. In rat mammary tissue, Mrp4 was up-regulated by BDL. Serum BA levels were 2-fold higher in 10-day-old neonates of the BDL group, whereas their body weight was lower. The exchange of breastfeeding mothers immediately after birth reverted the situation without changes in endogenous BA synthesis. In conclusion, Bcrp is involved in BA secretion into milk, whereas Mrp4 participates in a blood-milk barrier that protects neonates from maternal hypercholanemia during breastfeeding.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Ácidos e Sais Biliares/sangue , Colestase/prevenção & controle , Lactação , Glândulas Mamárias Animais/química , Animais , Colestase/sangue , Colestase/genética , Colestase/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Gravidez , Ratos , Ácido Taurocólico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...